
NASA Contractor Report 191130

//V-lq

l
J

Informatibn_ Switching Pr0cessor (ISP)
Contention Analysis and Control

D. Shyy and T. Inukai
Comsat Laboratories

Clarksburg, Maryland

May 1993

|

Prepared for
Lewis Research Center

Under Contract NAS3-25933

(NASA-CR-191130) INFORMATION

SWITCHING PROCESSOR (ISP)

CONTENTION ANALYSIS ANO CONTROL

Fin_l RepoFt (Communications
Center) 84 p

G3/17

N93-28416

Unclas

016_769



_--k_ _¸ ¸ i

Jl _T

J



TECHNICAL SUPPORT FOR DIGITAL SYSTEM TECHNOLOGY

DEVELOPMENT

Task Order No.1

Final Report

INFORMATION SWITCHING PROCESSOR (ISP)
CONTENTION ANALYSIS AND CONTROL

Submitted to

National Aeronautics and Space Administration
Lewis Research Center
21000 Brookpark Road
Cleveland, Ohio 44135

Contract No. NAS3-25933

February 10, 1992

COMSAT LABORATORIES
22300 COMSAT DRIVE, CLARKSBURG, MARYLAND 20871

f



_ _ _ _-L7 -_ Z _ 7_ -



Table of Contents

2

Introduction ............................................................................................. 1

SatelHte Network Requirements .......................................................... 3

2.1 Reference Network Architecture ..................................................................... 3

2.2 On-Board Baseband Processor Configuration ................................................ 5

2.3 Study Task - Contention Control .................................................................... 7

3 On-Board Switch Architectures and Contention .................................. 8

--3.1 Contention-Free Switch Axc_tect_s.,S.,._...................................................9

3.1.1 TDM Bus with Distributed Output Memories ...................................9

3.1.2 Fiber Optic Ring Switch .......................................................................11

3.1.3 Common Memory Switch .....................................................................13

3.1.4 ApplicabilitytoReference Network Architecture...............................15

3.2 Contention Switch Architectures....................................................................16

3.2.1 Output Port Reservation Scheme ........................................................17

3.2.1.1 Point-to-PointSorted-Banyan-Based Switch .......................18

3.2.1.2 High Speed Bus with Distributed Input Memories .............31

3.2.1.3 Contention-Free Switch ........................................................31

3.2.1.4 Multicast Unbuffered Banyan Switches ..............................33

3.2.2 Path Setup Scheme ..............................................................................41

3.2.2.1 Unbuffered Banyan Switch with an Increased

Switch Speed .......................................................................... 43

3.2.2.2 Parallel Unbuffered Banyan Switches ................................. 43

3.2.2.3 Unbuffered Multicast Banyan Switch .................................. 44

3.2.3 Address Filter Scheme ......................................................................... 46

3.2.3.1 Knockout Nonblocking Switching Fabric with

Output Buffering ...................................................................46

3.3 Throughput Performance ................................................................................48

3.3.1 Simulation Models ................................................................................48

3.3.2 Simulation Results ...............................................................................51

3.4 Summary ofSwitch Contention ......................................................................59

4 On-Board Switch Output Multiplexing ............................................ 61

4.1 Down]ink TOM Frame Structures .................................................................. 62

4.2 Multiplexer Implementation ........................................................................... 64

4.2.1 Implementation Options ...................................................................... 64

4.2.2 Buffer Size ............................................................................................ 65

-ii-



Table of Contents (cont'd)

5

6

7

Integrated Circuit and Packet Switched System .................................... 68

Approaches to Congestion Problems .............................................. 71

Conclusion ................................................................................... 73

8 References ...................................................................................... 75

i°.



List of Illustrations

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

1

2

3

4

5

6

7

8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

Figure 19

Figure 20

Figure 21

Figure 22

Figure 23

Figure 24

Figure 25

Figure 26

Figure 27

Figure 28

Figure 29

Figure 30

Figure 31

ReferenceNet-workArchitecture ..................... .- ....... .- ........... •....... ..:._; ..... 4

On-Board Baseband Processor Block Diagram ............................. . ......... 6

Output Contention .................................................................................... 8

Correspondence Between Banyan Switch and TDM Bus
Switch ........................................................................................................ 9

TDM Bus with Distributed Output Memories ........................................ 10

Fiber-Optic Ring Switch ........................................................................... 12

Common Memory Switch ......................................................................... 14

Sorted-Banyan-Based Network (Point-to-Point Nonblocking

Network) .................................. :.: ............................................................... 19

Output Port Reservation Scheme with Tokens ....................................... 21

Output Contention Resolution Using a Sorting Network ...................... 22

Output Contention Resolution Device ..................................................... 24

Output Contention Resolution Device...: .................................................. 25

Setup Phase + Forwarding Phase Protocol ............................................. 26

Forwarding Phase + Retransmission Phase Protocol ............................. 27

Sorted-Banyan-Based Network with Reentry Ports ............................... 28

Sorted-Banyan-Based Network with 3-Phase Algorithm ....................... 30

TDM Bus with Distributed Input Memories ........................................... 32

4 x 4 Contention-Free Switch .............................. : .................................... 33

Store-and-Forward at the Input Ports .................................................... 35

Tree Hierarchy of the Multicast Routing Field ....................................... 37

8 x 8 Nonblocking Multicast Banyan Network ....................................... 39

Multicast Modules at the Ouput Ports .................................................... 40

Multicast Knockout Switch ...................................................................... 42

Multicast Banyan Switch ......................................................................... 45

N x N Knockout Switch with Ouput Queueing ....................................... 47

Switch Simulation Model ......................................................................... 49

Throughput Performance of the 8 x 8 Point-to-Point Switch for

Different Checking Depths ....................................................................... 52

Throughput Performance of the 8 x 8 Point-to-Point Switch for

Different Speedups ................................................................................... 52

Throughput Performance of the 8 x 8 Point-to-Multipoint

Switch for Different Checking Depths when the Multicast

Packet Ratio is 0.1 .................................................................................... 53

Throughput Performance of the 8 x 8 Point-to-Multipoint

Switch for Different Speedups when the Multicast Packet

Ratio is 0.1 ................................................................................................. 54

Throughput Performance of the 8 x 8 Point-to-Multipoint

Switch for Different Speedups when the Multicast Packet

Ratio is 0.2 ................................................................................................. 54

- iv ° OR_G15L_£ PA,.qE fS

OF POOR QUAL!TY



List of Illustrations (cont'd)

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

32

33

34

35

36

37

38

39

4O

41

42

43

Nonuniform Destination Distributions for 8 Traffic

Generators ................................. ............................................................... 56

Nonuniform Destination Distribution_ for 8 Traffic : :

Generators..._._ ..... . ....................................................................... 57

Nonuniform Input Link Utilizations ...................................................... 58

Nonuniform Input Link Utilizations ..................................................... 58

Nonuniform Multicast Packet Ratio for 8 Traffic Generators .............. 59

Downlink TDM Frame Structure with Dedicated Reference

Bursts ........................................................................................................ 62

Downlink TDM Frame Structure for Single Burst per Dwell
Area _-oH--oejo_-_6dooI_1j_m----j_**m_HHm_B-ieee*Q_6oojI_-o_*I--I.*Q_**_oHoiwo_o_oIo_o-o*-_---------- 63

Separate Buffers for Circuit and Packet Switched Traffic ............. ,..,,.. 64

Shared Buffer for Circuit and Packet Switched Traffic .......................... 65

Distribution of Packet Switched Traffic in Downlink TDM

Frame ........................................................................................................ 66

Downlink Time Plan Switchover Process ................................................ 67

Token Format with Priority Subfield ................................................... 69

-V-

(_ _0oR QUAL_ry



List of Tables

Table 1

Table 2

Table 3

Traffic Intensity for Different mr ................................................................ 51

System Capacity .......................................................................................... 61

Frame Inefficiency ....................................................................................... 64

-vi-





1 Introduction

Future satellite communications, as a viable means of communications and an

alternative to terrestrial networks, demand flexibility and low end-user cost. On-board

switching/processing satellites potentially provide these features, allowing flexible

interconnection among multiple spot beams, direct to the user communications services

using very small aperture terminals (VSATs), independent uplink and downlink

access/transmission system designs optimized to user's traffic requirements, efficient

TDM downlink transmission, and better link performance. A flexible switching system

on the satellite in conjunction with low-cost user terminals will likely benefit future

satellite network users.

In designing a satellite system with on-board processing, the selection of a switching
architecture is often critical. The on-board switching function can be implemented by

circuit switching or destinati0n-directed packet switching, which is also known as fast

packet switching. Destination-directed packet switching has several attractive features,

such as self-routing without on-board switch reconfiguration, no switch control memory

requirements, efficient bandwidth utilization for packet switched traffic, and
accommodation of circuit switched traffic. These advantages have been fully described

in various papers in the past [1] - [4].

Destination-directed packet switching, however, has two potential concerns: (a)

contention and (b) congestion. Contention occurs when two or more packets from

different input ports attempt to reach the same output port at the same time, and

congestion occurs when an on-board buffer overflows due to the limitation in switch

routing capability or downlink transmission capacity. This report specifically deals with

the fn'st problem. It includes a description and analysis of various self-routing switch

structures, the nature of contention problems, and contention resolution techniques.

The following is a brief description of the contents of this report.

Section 2 describes the satellitenetwork requirements which are the basis of this study

and includes a reference network architecture, on-board baseband processor

configuration,and problem statement.

Section 3 presents contention-free switch architectures and contention-based

architectures. Contention-based architectures include three types of contention

resolution techniques, such as output port reservation, path setups prior to packet

routing, and address filtering. Simulation results on switch throughput performance

are also provided.

Section 4 addresses multiplexing schemes at the switch output ports for circuit and

packet switched traffic. The use of a shared buffer for the two types of traffic potentially

reduces on-board packet congestion.

Section 5 considers the feasibilityof integratingcircuitand packet switching with a fast

packet switch. This type of switch is more flexiblethan separate switches for circuit

and packet switched traffic.
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Section 6 briefly describes possible techniques for congestion control. Since this subject

is not a part of this study and also requires extensive investigation, no detailed analysis

is provided.
a

Section 7 summarizes the study results and presents recommendations for future study.
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2 Satellite Network Requirements

This section describes the reference network architecture rand on-board processor (OBP)

configuration used for this study. Although the system architecture assumes specific

network parameters, the general discussions, results, and conclusions presented in the
following sections are not restrictec[-to the particular sampIe architecture and are

applicable to a destination-directed packet switched system in general. A description of

the study task is also included in this section.

2.1 Reference Network Architecture

The satellite network under consideration operates at the 30/20-GHz frequency band

and provides flexible, low-cost mesh VSAT services to users located in the continental

United States (CONUS). The satelliteantenna coverage consists of eight fixed uplink

beams, eight hopping downlink beams, and an intersatellitelink (ISL), where each

downlink beam has eight dwell locations. An on-board baseband processor (OBP)

provides connectivityamong uplink and downlink beams. Figure I depicts the system

concept.

The system provides voice, data, facsimile, datagram, teleconferencing, and video

communications services. To support these services,the system incorporates two types

of transmission modes. The firsttype isa continuous transmission of circuitswitched

trafficat 2.048 Mbit/s,which istrunked to eithersingleor multiple destination stations

and does not require on-board demultiplexing of individual channels. The second type is

also continuous transmission at 64 kbit/s,but itconsists of fLxed length packets with

variable destinationstations.The satelliteroutes these packets to the proper downlink

beams according to the routing information contained in the packet headers. Each

uplink beam supports forty(40)2.048-Mbit/s and one thousand and twenty-four (1,024)

64-kbit/sFDMA carriers. In addition,each uplink beam includes one or two 64-kbit/s

time-slotted signaling channels operating either in TDMA or random access mode.

These channels are shared by alluser earth stations within a beam to send orderwire

messages to the satellite,such as capacity allocation/deallocationrequests, traffictypes,

trafficcharacteristics,station status, and other messages necessary for network

operation.

Downlink transmission to each beam isburst TDM at 150 Mbit/s and consistsof eight

TI)M bursts, each destined to one ofeight dwell locationswithin the beam. The circuit

switched trafficand packet switched trafficare multiplexed on board the satelliteto

form a s_gle TDM burst per dwell area for efficientsatellitepower utilizationand

simpler user earth station processing. Down]ink orderwire messages for capacity

assignment and station control are also included in the burst. For broadcast and

multicast operation, the satellitemust be capable of duplicating and transmitting the

received message to up to 64 d0wn]ink dwell locations.

-3-
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For the purpose of this study, it is assumed that the ISL transmission capacity is the

same as that of one beam, i.e., about 150 Mbit/s, and includes both circuit and packet

switched traffic.

The total system capacity of 2.048-Mbit/s trunk service is 737 Mbit/s (= 2.048

Mbit/s/carrier x 40 carriers/beam x 9 beams including ISL), and that of 64-kbit/s packet

service is 590 MbitYs (= 64 kbit/s/carrier x 1,024 carriers/beam x 9 beams including ISL).

2.2 On-Board Baseband ProcessorConfiguration

Connectivity among spot beams is established by the OBP of which a functional block

diagram is shown in Figure 2. The 2.048 Mbit/s uplink carriers from each beam are

demultiplexed and demodulated by a multicarrier demultiplexer/demodulator (MCDD),

FEC decoded, frame synchronized, and suitably reformatted for subsequent switching.

The circuit switch provides a routing path from an input port to one or more output

ports, and the path configuration remains unchanged for the 'duration of a circuit

switched call.

The packet switched traffic transmitted on a 64-kbit/s carrier is first demultiplexed and

demodulated by an MCDD as in the previous case. The transmitted packets are

detected by a packet synchronizer, FEC decoded, and assembled to form complete

packets prior to routing. The (fast) packet switch routes these packets to the proper

output ports according to the information contained in the packet headers.

The input processing functions can be implemented in several ways in an actual system.

For example, TDM frame synchronization may be performed prior to FEC decoding to

reduce FEC decoder complexity operating in a time-shared manner. This will, however,

require a longer unique word to identify a TDM frame marker or separate FEC coding.

The locations of packet synchronization and packet assembly functions can be

interchanged for the same reason. This will also provide added protection on the packet

headers with double FEC coding. The switching function can be performed by two

independent switches as Shown in the figure or can be implemented by a single

integrated fast packet switch. This issue is further exploited in a later section.

The downlink processing functions include multiplexing of two types of traffic along

with station control messages, burst TDM formatting, FEC encoding, and modulation.

Typically, one burst per dwell location is transmitted to each beam in one frame period.

The packet switched traffic is statistical, and the amount of traffic flow to a particular

downlink beam changes from frame to frame, causing a potential buffer overflow. To

minimize on-board packet congestion, a downlink buffer can be shared by circuit and

packet switched traffic such that when the volume of circuit switched traffic is low, the

excess buffer can be used for packet switched traffic on a contingency basis.

-5-
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2.3 Study Task - Contention Control

There are two major system design issues associated with destination-directed packet

switching. The first issue, which is the subject of this study, is a contention problem

within a switch fabric. Since there will be no preassigned routing paths for data

packets, a problem arises when packets from different input ports are to be routed to

the same output port at the same time. This contention problem must be resolved by

the use of a special switch structure or by some mechanism of avoiding simultaneous

packet routing to the same output port.

The second issue isa congestion problem, which occurs when the totalamount ofpacket

switched trafficto some beam exceeds the allocatedon-board buffer capacity. This isan

inherent problem associated with virtuallyallfastpacket switched systems, including

broadband ISDN Asynchronous Transfer Mode (ATM)networks. Efficient

flow/congestioncontroltechniques must be devised to overcome thisproblem.

This study task deals with the contention problem. The following sections present

several switch structures which are free from contention. In general, this type of switch

architecture has a throughput limitation of a few gigabits per second. A higher capacity

can be achieved with increased hardware complexity. Another type of switch

architecture avoids contention by properly scheduling packet routing within a switching

subsystem. A much higher throughput than the first type can be achieved with a

moderate increase in control complexity. In this type of architecture, contention and

congestion problems are inter-related, and contention-free switch operation is achieved

at the expense of somewhat increased congestion. The report includes a detailed

description of several such switching architectures, design tradeoffs, and a throughput

analysis. Also included in the report are design approaches and contention/congestion

control techniques for an integrated circuit/packet switch.

-7-



3 On-Board Switch Architectures and Contention

The difference between a circuit switch and a packet switch is that a packet switch

performs like a statistical multiplexer while a circuit switch performs like a

deterministic multiplexer. In a packet switch, several packets from different input

ports may be destined to the same output port at the same time. This situation is

referred as output contention (see Figure 3). Depending on the switch architecture,

there are several means of resolving output contention.

Input Port 0 _-.

I Input Port 1 J

(3)
lii_iiiiiiiiiiiii;ii;?_iiiiii_110 i

Input Port 2 [---

I Input Port 3 ]---

Input Port 4 J---

(3)

Input Port 6 ]---

I Input Port 7 t--

On-Board
Fast Packet Switch

Output Port o [

[ Output Port 1 I

Output Port 2 I

• , --I
Output Port 3 I

Output Port 4 I

Output Port 5 J

__[ Output Port 6 I

--_. Output Port 7

Figure 3. Output Contention

.The switch architectures can be categorized into two classes:a contention-free switch

and a contention switch. Three techniques ofimplementing a contention-freeswitch are

described. Within the contention switch class,the switch architectures are classified

according to the output contention resolution schemes. There are three subclasses:the

firstone employs an output reservation scheme at the input ports,the second one uses a

path setup strategy to resolve blocking within a switching fabric and at the output ports

at the same time, and the third one uses an address filter at the output port.
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3.1 Contention-Free Switch Architectures

3.1.1 TDM Bus with Distributed Output Memories

The TDM bus is a degeneration of the banyan switch obtained by compressing the

switching fabricintoa bus (seeFigure 4). In this scheme, allthe packets from different

input lines are multiplexed into a high-speed TDM bus. The speed of the TDM bus is

the sum ofthe rates of the incoming lines.Since a TDM bus is a nonblocking switching

fabricand the speed is N times fasterthan the link speed, the output port can receive

up to N packets within one linkslottime, where a link slotisdefined as the ratioof the

packet sizeand the link speed. Therefore,there isno output contention in the TDM bus

with distributedoutput memories.

oat_tPorto J

Output Port 1 J

Output Port 3 J

Output Port 4 J

Output Port 6 J

Output Port 0 ]

Output Port 1 J

Output Port 2 J

Output Port 3

Output Port 4 j

[ Input Port 2

I Input Port 4

I Input Port 5

[ Input Port 6

Banyan Switching Fabric

[ Input Port 1

I input Port 6

[ Input Port 7

TDM Bus

Output Port 5 J

Output Port 6 I

Output Port7"--"]

Figure 4. Correspondence Between Banyan Switch and TDM Bus Switch

One possible implementation of the TDM bus switch is described as follows. As shown

in Figure 5, there are two separate logicalbuses within a physical bus; the fn'stone is

the packet (data payload) bus and the second the address (routing tag) bus. The

address filterat each output port selectsthe desiredpackets on the TDM bus. Since

-9-
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more than one packet may arrive at the output port in one slot time, buffering is

required at the output ports.

For point-to-pointconnection, the self-routingaddress (or the routing tag) requires at

least Log2 N bits. Since the TDM bus has an inherent broadcast capability,the TI)M

bus isalso a point-to-multipointnonblocking switching fabric.The multicast connection

can be achieved by modifying the routing tag. The multicast routing tag requires N

bits,where each bitrepresents one output port.

The packet filter structure depends on the addressing scheme. For a point-to-point

addressing scheme, the packet filter is implemented using a comparator. For a

multicast addressing scheme, the packet filter is a simple latch circuit.

The TDMA bus speed is given by LN/p, where L, N, and p are respectively the link

speeed, the number of input ports,and the number of parallelbus lines. The general

concerns with the TDM bus approach are the bus speed, the memory access time, and

the bus loading (i.e.,the number ofinput and output ports on the bus).

Congestion Issue

Since buffering isimplemented at the output port,beam trafficcongestion may occur at

the output port. Congestion occurs when the incoming trafficis nonuniform in the

output destination distribution or a short-term trafficintensity to a certain beam

exceeds the beam capacity. The output buffershould be designed to absorb short-term

fluctuations.When a bufferoverflow occurs,some packets may be dropped.

3.1.2 Fiber Optic Ring Switch

The opticring switch, as shown in Figure 6, uses the same design principleas the TDM

bus, i.e.,the opticbus speed isthe sum of the rates ofthe incoming lines.The difference

isthat the opticalring can be operated in a much higher speed than the TDM electronic

bus. Also, since the signal isregenerated at each port,the optic ring can accommodate

more ports than the TDM bus.

The optic ring switch operates on a flame-by-frame basis. The autonomous network

controller(ANC) periodicallysends a frame marker to the bus. When an input port

receives the frame marker, itinserts a packet with a routing tag into the preassigned

empty slot.After the lastinput port has inserted a packet into an empty slot,the frame

has been formed. The frame loaded with data packets iscirculatedaround the output

ports. There is an address falterattached to the bus at each output port. The filteris

used to selectthe packets destined to the particularoutput port.

The optical ring switch has no internal blocking for point-to-point and point-to-

multipoint connections and has no output contention.

-11-
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Congestion Issue

Since buffering is also _plemen_d at the output port of the s_h as in the _M bus,

the same congestion problem as in the TDM bus exists.

3.1.3 Common Memory Switch

In thisstructure,allthe packets from differentinput linesare multiplexed into a single

TDM packet stream. The speed of the TDM stream is the sum of the incoming rates.

The common memory approach, unlike the TDM bus switch with distributed output

memories, shares one large memory among allthe output ports.

There are several memory implementation techniques forswitching. The simplest way,

called a complete partition approach, is to partitionthe memory into N areas, where

each area stores the packets destined to one output port. When packets arrive at the

switch, th_ write controllerexamines the routing tag and stores the packet into the

corresponding area sequentially. To provide contention-freeoperation, the size of the

memory has to be at least N 2 packets, because each area needs to accommodate the

worst situation that N packets are destined to the same output port at the same time.

During the read cycle,the read controllerreads packets sequentiallyfrom each area and

sends the packets to the corresponding output ports through a demultiplexer. This

approach is very similar to the TDM bus with distributed output memories. The

disadvantage of thisapproach isthat the memory isnot shared efficiently.

Congestion Issue

As in the TDM bus, congestion occurs ifthe amount of trafficexceeds the capacity of the

switch, i.e.,the allocatedarea foreach output port in the memory.

The second approach, called a complete sharing approach, is described below. The

packets are stored in the common data memory, and the memory addresses of these

packets are written into the controlmemory (see Figure 7). The self-routingaddresses

ofthe packets pass through the matched address filtersand activate the corresponding

pointer array. The address of the control memory is written into the pointer array

according to the self-routingaddress. The packet control memory addresses whose

packets go to the same output port are grouped intoone array. The TDM output stream

is formed by reading a packet out of the data memory for each output port using the

address obtained from the controlmemory, while the address Of the controlmemory is

obtained using the addresses of each array corresponding to each output port. The

packets on the TDM stream are demu]tiplexed into different output ports.

- 13-
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Since the data memory and control memory are operated in a random read fashion, it is

not easy to keep track of the empty memory space after the packets have been read out

from the memory. Link list implementation of the memory is required to efficiently use

the memory space. Each time a packet is read out from the memory, the address of the

empty location enters an empty buffer pool. Each time a packet is written into the

memory, an empty address is selected from the pool to store the packet.

For point-to-pointconnection, the shared-memory switch has no internal blocking and

has no output contention.

The multicast operation is achieved using multiple writes to the pointer arrays since

more than one pointer arrays will be activated at the same time for multicast

connection. This is the most efficientmulticast operation in terms of memory usage

since there is only one copy of the multicast packet stored in the memory. Duplication

ofthe packet isnot performed on the packet itselfinstead on the memory address of the

packet.

A concern with this approach isthe memory access time requirement for high speed

application. This problem can be overcome by Using a wider parallel bus. Another

concern isthe memory size,which includes the data memory and the controlmemory.

Congestion Issue

Since memory is shared among all the output ports of the switch for the complete

sharing scheme, the congestion problem is not as severe as the complete partitioning

scheme. The memory acts as a very large buffer to absorb fluctuation of the incoming

traffic. However, congestion may still occur if traffic imbalance persists for some period

of time.

3.1.4 Applicability to Reference Network Architecture

Any one ofthe contention-freeswitch architecturespresented above can be employed for

implementing a destination directed packet switch for the reference network

architcture. A 590,Mbit/s throughput for packet switched trafficrequires a 32-bit

paralleldata bus operating at 18.4 MHz or a single high-speed optic ring operating at

about 600 Mbit/s (includingframe overhead). Implementation of such a contention-free

switch iswell within the current technology.
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3.2 Contention Switch Architectures

Allowing some output contention to occur in the switch (or even internal blocking within

the switching fabric) can reduce the hardware complexity and speed requirement

compared with the contention-free switch. From the switch capacity and hardware

complexity point of view, the banyan-based switching fabric becomes the most attractive

candidate for the contention switch. To resolve the output contention problem and/or

the internal blocking problem, packet transfer at the input ports has to be scheduled. In

each packet transfer process, a set of non-contending packets is chosen from the input

ports. The packets presented to the switching fabric have distinct destination addresses

and will not be collided in the switching fabric. Based on the output contention

resolution scheme (or packet transfer scheduling algorithm), the contention switch

architectures can be categorized into three subclasses.

The first subclass uses an output port reservation scheme at the input ports to resolve

output contention. The prerequisites for this class of switches are: the switch

incorporates queueing at input ports and the switching fabric is nonblocking. The

function of the output port reservation scheme is to choose a nonblocking set (or a

permutation set) of connections from the packets at the input ports. Due to head-of-line

(HOL) blocking at the input port queue, the packet switch throughput for point-to-point

connections cannot exceed 58% for a large N [5]. The throughput is defined as the

average number of packets arrived to the output ports in one link slot divided by the

switch size,where a link slotis defined as (packet size/inputlinkspeed). This blocking

isa sideeffectresulting from output contention. Assume that one packet at the head of

a queue cannot be transmitted due to output contention. Then, this blocked packet

hinders the delivery of the next packet in the queue due to the firstcome firstserve

(FCFS) nature of the queue, even though the next packet can be transmitted to the

destination without any blocking. To improve the throughput of the switch, there are

three basic methods. The firstmethod isto increase the switch speed so that more than

one packets can arrive at one output port within one slottime. The ratio of the switch

speed to the link speed is defined as the speedup factor(S). The second method isto use

p parallelswitches,p transmitters at the input port,and p receiversat the output port.

The result is there are p disjointpaths between each input and output pair,the input

can transmit up to p packets, and the output port can receive up to p packets at the

same time. The third method is to design a more efficientscheduling algorithm to

increase the throughput of the switch. In the firsttwo methods, since more than one

packet can arrive at one output port in one link slottime, the switch has to incorporate

output queueing to hold the packets. In this case, each output port performs as a

statisticalmultiplexer. Since output queueing is used, the throughput definitionis

modified as the average number of packets leaving the output ports in one link slot

divided by the switch size.

The second subclass of switches uses the path setup strategy to resolve internal

blocking of the switching fabric and output contention at the same time. The

prerequisiteisthat the switch incorporates queueing at input ports. Due to head-of-line
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(HOL) blocking at the input port queue and switching fabricblocking,the packet switch

throughput ismuch lessthan 58% [6].There are two ways to improve the throughput of

the switch. The firstone isto increase the switch speed so that more than one packet

can arrive at an output port in one slottime. The second one to use p parallelswitches,

p transmitters at the input port, and p receivers at the output port. This willyieldp

disjointpaths between each input and output pair so that more than one packet can

arrive at an output port at the same time, and the input port can try to transmit up top

packets at the same time. Since more than one packet can arrive at one output port

within the same slottime, the switch has to incorporate output port queueing to hold

the packets.

The third subclass ofswitches uses an address filterto selectthe packets destined to the

output port without any output reservation or path setup scheme. The prerequisiteis

that a packet can reach the destined output port without any blocking and output

contention. A switch provides a disjointpath between each input and output pair.

Since there isa disjointpath between each input and output pair,the switching fabricis

point-to-pointnonblocking and point-to-multipoint nonblocking. However, since the

format of the point-to-pointrouting tag is differentfrom that of the point-to-multipoint

routing tag, the implementation of the switch such as the address filterdesign or the

switching element design isdifferentfor point-to-pointand multicast cases even though

the switching architectures remain the same.

3.2.1 Output Port Reservation Scheme

The output contention problem is resolved using the output port reservation scheme at

the input ports. Since there is no internal blocking for this class of switches, if the

output port of a packet is reserved, the path through the switch is also reserved.

Among point-to-pointnonblocking switching fabricsbased on the banyan network, the

sorted-banyan-based network is the most widely used network. Before the sorted-

banyan-based switch is described, the two essential components, i.e.,the banyan

network and the batcher sortingnetwork, are introduced.

A banyan network isin the category of multistage interconnection networks [7]. Itcan

be constructed using any size of switching elements. If the size of the switching

elements in the banyan network isa D x D switching element, the number ofswitching

elements at each stages is N/D, and the number of stages is LogD N. The banyan

network is a unique path network in which there isonly one path between any input-

output pair. The banyan network istopologicallyequivalent to many other multistage

interconnection networks such as baseline,omega, flipand shufflenetworks.

A 2 x 2 switching element has four allowed states: straight, exchange, lower broadcast,

and upper broadcast. For the point-to-point banyan network, only the straight and

exchange states are used, and each switching element needs to check only one bit of the

routing tag to route the packet. The lower broadcast and upper broadcast states are the

basic principles that a banyan network can perform the multicast function; the

multicast banyan network will be discussed in a latter subsection. If the corresponding
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routing bit is zero, the data willbe sent to the upper link of the element; otherwise, to

the lower link. For easy hardware implementation, the switching element at stage 1

checks bit 1 of the routing tag. The switching element at stage k checks bit k of the

routing tag, where 1 _<k < Log2 N. Following thisbitrepresentation,the leffmost bitof

the routing tag is the least significantbit and the rightmost bitis the most significant

bit.

The batcher sorting network is in the category of bitonic sorting networks which

produce sorted outputs from circular bitonic inputs [8]. A bitonic listis a listwhich

monotonically increases from the beginning to the i-thelement and then monotonically

decreases from the i-thelement to the end. A circularbitoniclistiscreated from joining

the beginning and the end of a bitoniclist,and then breaking the circularstructure into

a linearstructure at any desired point.

The sortingnetwork has a similar property as a banyan network, i.e.,a large network is

constructed recursivelyfrom a smaller network. An N x N batcher sortingnetwork has

Log2 N (Log2 N + 1) stages,and stages consistsof -_ sortingelements.each

One of the important properties of the banyan network is that ifthe incoming packets

are arranged either in ascending or descending orders and there is no empty line

between any two activelines,there isno internal blocking within the banyan networl_

An active line means that there is a packet waiting to be transmitted. A way of

arranging the arriving packets in a descending order is to use a batcher sorting

network. To concentrate the packets at the outputs of the sorting network, empty

packets are generated at the inactiveinput ports. The resultisthat the totalnumber of

packets (data packets and empty packets) generated at the input ports isalways equal

to the size of the switch. To accommodate the empty packets within the sorting

network, the routing tags are modified as follows. The most significant bit of the

routing tag isdesignated to be the activitybit.For data packets, the activitybitis i;for

the empty packet, the activitybitis0. After the sortingnetwork, the appearance of the

data packets at the outputs of the sorting network will be above the empty packets.

Hence, the data packets have been concentrated and arranged in a descending order at

the outputs of the sortingnetwork. The empty packets are deleted and the data packets

are fed into the banyan network. The sorting network and the banyan network are

connected using a shuffleinterconnectionpattern (seeFigure 8).

3.2.1.1 Point-to-Point Sorted-Banyan-Based Switch

Since the sorted-banyan-based switch has a point-to-pointnonblocking switching fabric,

ifthe destined output port of a packet is reserved, the path through the switch is also

reserved. The possibleoutput contention resolutionschemes are as follows:

• output reservation at the input ports with input buffering

• setup phase + transfer phase with input buffering

• transfer phase + retrausmission phase with input buffering
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• trap phase at the sorted-banyan-based switching fabric with input buffering

• sorted-banyan-based switching fabricwith three-phase algorithm

a. Output Reservation Scheme 1: Ring Reservation Scheme

Basically, the ring reservation scheme uses the token ring principle to resolve output

contention [9].The input ring connects allthe input ports of the switch, and a stream of

tokens, where one token represents one output port, are sent through the input ports

(see Figure 9). The function of the ring isto perform output reservation for each input

port. At the beginning of every slottime, the ring module sends a stream of tokens and

passes these tokens to allthe input ports. The input port searches the right token

according to the destination routing tag of the current packet. If the token for the

corresponding routing tag ison the stream, then the token isremoved so that no other

input port can transmit a packet to the same output port at the same slottime. After

the token stream has passed through all the input ports, the input ports that have

reserved a token can transmit the packet at the beginning of the next slot time. In

implementation, only one bit is necessary for one token. For example, value 1

represents there is a token and value 0 no token. To assure fairness among the input

ports of accessing the tokens, several strategies can be considered. The firsti_ at

differentslottime, the stream willbe started at differentinput port. The second isto

send this stream from the beginning of the input ports and then from the end of the

input ports alternatively.

To improve the throughput of the switch, a non-FIFO input queue with the windowing

scheme isused. In thisscheme, ifthe firstpacket isblocked due to output blocking,the

scheduling algorithm also examines (searches) the packets on the back of the first

packet. This scheme is also referred to input queue by-pass [10]. The number of

packets examined each time depends on the preset window sizeor the checking depth.

If one of the packets within the checking depth has a chance to be transmitted, this

packet willbe transmitted first.In this sense, the FCFS input queue has a checking

depth 1 while a non-FIFO input queue has a checking depth greater than 1.

Theoretically,ifthe checking depth isinfinite,the throughput of the switch can reach 1.

However, in practical, the checking depth is finite and less than O (10). The

effectivenessof using a non-FIFO queue with a finitechecking depth is examined in a

lattersubsection using simulation techniques.

b. Output Reservation Scheme 2: Output port Reservation with an Arbitrator

The other way of resolving the output contention problem is to use a bidirectional

sorting network [11](seeFigure 10). The sortingnetwork has the property of arranging

the arriving packets based on their destination addresses either in the ascending or

descending order. At the beginning of every slot,the input ports send setup packets

containing the destination addresses (or routing tag) to the bidirectional sorting

network, and finallyreaches the arbitrator.All the setup packets that have the same

destinationaddresses willbe adjacent to each other. A distinctiveset ofdestination
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Figure lO. Output Contention Resolution Using a Sorting Network

addresses can be selected easily using an array of comparators within the arbitrator.

The arbitrator sends acknowledgements (ACKs) and negative acknowledgements

(NACKs) through the bidirectional sorting network to the input ports to report the

arbitration result. For the. input ports whose packets have been selected for

transmission at the next slot time receive an ACK. For the input ports whose packets
have not been selected for transmission at the next slot time receive an NACK.

To improve the throughput of a switch, a large checking depth is desirable, where a

throughput is the average number of packets arrived at the output ports in one link slot

time. To examine more depths, the input port which has received an ACK will send the

same muting tag again. To guarantee that the packets which have won the arbitration

at the previous run still win the arbitration at this run, the muting tags of these packets

will be prepended with a priority bit so that these routing tags always win the

arbitration. The input port which has received an NACK will send the routing tag of
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the packet behind the HOL packet. With this priority bit mechanism, the input port is

able to check more depths to improve the switch throughput.

c. Output Reservation Scheme 3: an Output Contention Resolution Device

The output reservation is accomplished using an output contention resolution device

[12]. Within this device, there are two arrays of registers A and B, where the number of

registers in each array is N and the size of register is the size of the routing tag that are

used to hold the routing tags from all the input ports (see Figure 11). There is another

array of bit registers R to hold the reservation result. If Ri is 0 at the end of output port

reservation process, then input port i can transmit the current packet in the next slot.

Initially, all the routing tags from the input ports will be loaded into the array A and

array B; hence, the contents of array A and array B are exactly the same. All the bits in

array R are 0. To reserve the output ports, the routing tags between A and B have to be

compared with each other so that a distinctive set of routing tags can be selected. This

operation is achieved by flying array A and rotating array B. After each rotation, the
contents of array A and array B are compared. If Ai _ Bi, there is no action. If Ai = Bi,

then one routing tag will be selected for transmission. Now the problem is which

routing tag should be selected. To resolve this problem, another array of priority bit

registers, P, is used.

Initially, all the bits in array P are 0. Starting from the first rotation cycle, a bit 1 is

loaded into P0 (see Figure 12). In this situation A0 has the routing tag from input port

0 and B0 has the routing tag from input port N-1. If A0 = ]30 and now P0 = 1, R0

remains 0. Thus, the routing tag at A0 wins the arbitration. A1 has the routing tag

from input port i and B 1 has the routing tag from input port 0. If A1 = B1 and P1 = 0,

R1 is changed to 1. This means the routing tag at A1 loses the arbitration. It can be

seen that if Pi = 1, it means that the input port number at Bi is larger than the input

port number at Ai. If Pi = 0, it means that the input port number at Bi is smaller than

the input port number at Ai. It can be observed the arbitration rule for Ai = Bi situation

is that whoever holds the routing tag from an input port of a smaller number wins the

arbitration. This means the priority is given from top to down of the input ports. This

priority is implemented using the priority bit register P.

At the second rotation cycle, P0 and P1 all have bit 1. The comparison is performed

between array A and array B following the same procedure mentioned above.

In summary,

• after every rotation, the contents of Ai and Bi are compared.

- ifAi # Bi, no action.

- ifAi = Bi,

ifPi = O,Ri = 1

if Pi = 1, no action.
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Figure 12. Output Contention Resolution Device

• after N-1 rotations, all the input port i with Ri = 0 can be transmitted.

To have a fairaccess to an output port,the prioritybit in P0 can be loaded to different

Pi at the beginning of arbitrationat differentslots.To check more depths into the input

buffer,another array of bit registersW is required. Bit registersW are used to record

the arbitrationresults of the previous runs. Initially,allthe bitsin the array W are 1.

At the end ofthe first-runarbitration,the resultsof array R willbe copied into array W.

At the second run ofthe arbitration,the packets which lostthe firstrun arbitrationwill

send the routing tags of the packets behind the HOL packets. The packets which won

the Rrst run of arbitrationwillsend the same routing tags as the firstrun. During the

arbitration,ifWi = 0, Ri will be kept the same as the firstrun. This means that the
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packets which won the first run of arbitration are guaranteed to win the second run of

arbitration.

d. Output Reservation Scheme 4: Setup Phase + Transfer Phase Protocol

The procedure of this protocol is shown in Figure 13. The input port sends a small

setup packet and attempts to reserve a path between the input port and the destined

output port. The setup packet consists of only the routing tag. If the output port

receives the setup packet, the output port sends an acknowledgement (ACK) back to the

originating input port. After the path has been successfully set up, the input port can

release the packet and send it to the output port. If the input port does not receive an

ACK within three routing tag's unit time (two tag's time for the round trip delay time

and one tag's unit time for the transmission time), then the input port sends the setup

packet again, and the whole procedure is repeated. From the above discussion, the

switch needs to have bidirectional connection capability. This method can be operated

in the minislot mode, where the length of the minislot is the "setup time (three routing

tag's unit time). Note this method can also be used for a blocking switching fabric. This

issue will be discussed in detail in a latter section.

PacketFomat

Header

I y//A

Header

Inpu_Port
SetupPacket 1

Header

Output Port

Figure 13. Setup Phase + Forwarding Phase Protocol

e. Output Reservation Scheme 5: Transfer Phase + Retransmission Phase

The procedure of this protocol is shown in Figure 14. This procedure is only suitable for

the slotted mode operation. First, the input port stores a copy of the packet in the

buffer. Then, the input port sends the whole packet to the destined output port. When
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Figure 14. Forwarding Phase + Retransmission Phase Protocol

the output port receives a packet, an ACK is sent back to the originating input port.

When the input port receives an ACK, the input port discards the packet and processes

the next packet waiting in the buffer.Ifthe ACK does not come back within two routing

tag's time plus one packet length'stime, then the packet is sent again and the whole

procedure repeats. The switch needs to have bidirectionalconnection capability. The

method can only be operated in slotted mode. The length of the slot is the packet

length's time plus two routing tag's time. Note this method can also be used for a

blocking switching fabric.This issue willbe discussed in detailin a lattersection.

f. Output Reservation Scheme 6: Trap Phase at the Sorted-Banyan-Based Switching

Fabric with Reentry Network

The scheme uses a trap network aRer the sortingnetwork [13] (seeFigure 15). The trap

network resolves output contention by marking the packets with distinct output

addresses. In implementation, the trap network is implemented using an array of

comparators. After the trap network, there is a concentrator. The concentrator sends

the marked packets to the banyan network so that packets presented to the banyan

network all have distinctdestination addresses. The concentrator sends the trapped

packets back to the reentry inputs ofthe sortingnetwork. The packets in the reentry

-27-



- 28 -



port are retransmitted d.uringthe next time slot. The size of the sorting network is

larger than the sizeof the switch to accommodate the reentry ports. Ifthe number of

trapped packets islarger than the number of reentry ports,the packet willbe lost.Also

the packets may be delivered out-of-sequence, because the trapped packets are sent

back to the reentry ports (not the original input ports). These retransmitted packets

have to be given a priorityhigher than that of the new packets when conflictoccurs at

the output port; otherwise, there are chances that packets are transmitted out of

sequence.

g. Output Reservation Scheme 7: Sorted.Banyan-Based Switching Fabric with 3-Phase

Algorithm

The output contention resolutionalgorithm isdivided into three phases [14](seeFigure

16). At Phase I the input ports send setup packets to the trap network to resolveoutput

contention, where the.setup packet contains the source address and the destination

address. At Phase 2 the trap network marks the setup packets with distinctdestination

addresses. An ACK packet will be sent back to the originating input ports for the

marked setup packets, where the ACK packet contains the source address. To achieve

this function, the outputs of the trap network and the corresponding input ports are

connected. All the ACKs are sent to the input ports from the trap network Rrst. The

sorted-banyan-based network routes these ACK packets using the source addresses to

the corresponding output ports. The input port and the corresponding output port are

alsoconnected together. Hence these ACK packets are sent from the output ports tothe

corresponding input ports. At Phase 3 the input ports that receive ACK packets send

the data packets prepended with the destinationrouting tags to the output ports.

Congestion Issue

For the switches mentioned above, the possible situationswhich may cause congestion

at the input ports of the switch are:

• burst arrivals of packet destined to the same output port (or the downlink

beam).

• nonuniform output destinationdistributionof the traffic.

* nonuniform trai_cintensityamong the input ports.

To tackle the congestion problem, a congestion avoidance technique has to be employed.

This can be performed by monitoring the downlink beam utilizationand the input buffer

queue length. The information is broadcasted back to the earth stations continuously.

Ifthe utilizationand/or the queue length exceeds a certain threshold, the earth station

willdefer sending the packets destined to the congested downlink beams.
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If input and output buffering are used at the same time, accumulation of packets occurs

either at the input or at the output. Hence, it is possible to reduce the congestion by

shifting traffic to the uncongested port. The shifting effect allows the congested port to

digest the traffic and return to the normal state while the uncongested port tries to
absorb the excessive traffic. This is to say that by utilizing the buffer space

intelligently, congestion.may be reduced to a minimum.

3.2.1.2 High Speed Bus with Distributed Input Memories

As mentioned above, the TDM bus is a degeneration of the banyan switch. In this

scheme, the buffering of the arriving packets is performed in the input ports. As shown

in Figure 17, the distributed input memory approach is suitable for consistent flame

format between input lines and output lines. Since there is no output buffer, the output

contention has to be resolved at the input port. Hence, an outpul_ port reservation

device such as the ring reservation module is necessary to schedule the packet

transmission sequence among the input ports.

3.2.1.3 Contention-Free Switch

It is possible to create a contention-flee banyan-based switch. A contention-free switch

is defined as a switch whose output port can receive up to N packets in one link slot

time, where N is the size of the switch. If the switch speed is increased to N times of the

link speed, then the output port can receive up to N packets in one link slot time. If

there is a disjoint path between any input and output pair and there are N receivers at

the output port, then the output port can receive up to N packets in one link slot time.

A parallel switch consisting of N nonblocking banyan switches is contention free. Two

examples are given below. In these examples, only output buffering is required since

the switch itself is contention free.

a_ Contention-Free Sorted-Banyan-Based Switch

To design a contention-free switch based on the sorted-banyan-based switch is to

operate the switch N times faster than the link speed, where the N is the size of the

switch. Evidently, this method is not useful if the link speed is already high or the

switch size is large.

b. Contention-Free Parallel Switch Architectures

To have a contention-flee switch, the number of switching fabrics stacked in parallel

and the number of receivers at the output ports have to be the same as the switch size.

It is possible to use only one switching fabric to construct a contention-flee switch.

However, the switching fabric becomes nonsymmetric, i.e., the number of outputs is

larger than the number of inputs. To have a contention-free switch, the switching fabric

size has to be N x N 2. One output port is interfaced with N outputs of the switching

fabric (see Figure 18). Since more than one packet can arrive at one output port at the

same time, output queueing is necessary to hold the packets.
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Figure 18. 4 x 4 Contention-Free Switch

Congestion Issue

In the above two switching architectures, there is no output contention. However

congestion may occur at the output ports. The congestion situation is similar to the

TDM bus with output memories. It will not be repeated here.

3.2.1.4 Multicast Unbuffered Banyan Switches

There are three configurations of multicast switches depending on where the multicast

packet is duplicated. The first one duplicates the multicast packet at the input port one

by one, i.e., using the store-and-forward at the input port approach. The second one

duplicates the packet at the switching fabric, i.e., the point-to-multipoint switching

fabric approach. The third one duplicates the packet at the output port, i.e., the

multicast modules at the output ports. Note that if the switching fabric is nonblocking,

the output reservation schemes used for point-to-point connections can also be used for

point-to-multipoint connections with a slight modification. The output reservation

schemes for point-to-point connections assume that each input port can reserve one

output port at a time. For point-to-multipoint connections, each input port can reserve

more than one and up to N output ports at a time.
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These configurations are summarized below.

° Store-and-Forward at the Input Port

point-to-point nonblocking switching fabric.

- packet duplication occurs at the input port.

° Sorted-Multicast-Banyan-Based

- point-to-multipoint nonblocking switching fabric.

packet duplication occurs at the switching fabric.

Multicast Modules at the Output Port

- one point-to-point nonblocking switching fabric for point-to-point

connections.

- one point-to-multipoint nonblocking switching fabric at the output

ports forpoint-to-multipointconnections.

a. Store.and.Forward at the Input Port

In this approach, the multicast operation is achieved by sending the multicast packet

one by one from the input port (see Figure 19). The advantage of this approach is that a

point-to-point switch can be used as a multicast switch; hence, the hardware cost for

building a multicast switch is minimal. The disadvantages of this approach are the long

delay due to the serial transfer of the multicast packet and serious congestion if the

number of duplication is large.

The above approach is feasible and very cost effective if the amount of multicast traffic

is small and the number of duplication of each multicast packet is small. Otherwise,

serial packet duplication at the input port has to be modified so that parallel duplication

is possible.

One of the methods for parallel duplication is to send the multicast packet to adjacent

input ports so that packet duplication can be achieved in parallel by many input ports,

and each input port only handles a portion of the multicast traffic. In a sense, a virtual

copy network is implemented among the input ports using a bus structure. It can be

envisioned that this procedure involves a lot of handshaking among different input

ports.

If the input and output ports are combined into one module, the switching fabric can be

used as a copy network. Hence, the input port can send the multicast packet to several

output ports, and the output ports can relay this multicast packet to the accompanying

input ports. The locations of the input ports which are used to duplicate the packets are

decided at the call setup time.
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Figure 19. Store.and-Forward at the Input Ports

Congestion Issue

Congestion occurs in this class of switches due to the following two reasons:

• traffic imbalance of point-to-point connections.

• traffic imbalance of point-to-multipoint connections.

The main reason for traffic imbalance of point-to-multipoint connections is that if the

number of duplication of each packet is large, congestion occurs due to the serial

transfer o£ the multicast packet at the input port.

One possible solution for the traffic imbalance of point-to-multipoint connections is that

during the call setup phase, only a very small amount of multicast traffic can be

accepted. In essence, a very conservative call admission control is applied to ensure

that the multicast traffic almost never exceeds the capacity.
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b. Sorted-Multicast-Banyan-Based

The switching fabric is based on the multicast banyan network. As in the point-to-point

banyan network, the multicast banyan network has internal blocking. It is found that

the multicast banyan network can become a nonblocking multicast switching network

by using a sorting network in front of every stage of the multicast banyan network [15].

Input buffering isused to hold the arriving packets. It is assumed that the input port

has the call splittingcapability such that the transfer of the packet can be partially

completed. To have a consistent operation ofthe switching network, empty packets are

generated at the input ports ifno packets are ready to be transmitted at a slottime so

that the totalnumber of packets at the switching network isalways equal to the sizeof

the switch.

The multicast muting fieldformats use the even and c_idgroup concept associated with

the levels of the switching network, and they are arranged using a tree hierarchy

structure (see Figure 20). The definitionof a levelin the proposed switching network

will be explained later. At level 1, the even group consists of the output addresses

whose modulo 2 results are 0; the odd group consists of the output addresses whose

modulo 2 results are 1. The addresses at level i consist of 2 bitswhich are used for

muting at level I of the switching network. There are four possible combinations of the

2-bit format: (1,1),(1,0),(0,1),and (0,0) which represent the destination addresses

destined tobeth groups, even group, empty, and odd group.

The addresses at level 2 consist of 4 bits which are used for routing at level 2. The first

2-bit field is associated with the even group at level 1 and the second 2-bit field is

associated with the odd group at level 1. Examine the first 2-bit field. The subeven

group within the even group at level 1 consists of the addresses whose module 4 results

are 0 and the subodd group within the even group at level 1 consists of the addresses

whose module 4 results are 2. Examine the second 2-bit field. The subeven group

within the odd group at level 1 consists of the addresses whose module 4 results are 1

and the subodd group within the odd group at level 1 Consists of the addresses whose

module 4 resultsare 3.

In general, for a switching network with size N, the addresses at levelm consist of 2m

bits, where 1 _<m < Log2 N. The size of the multicast routing tag is 2N - 2.

Itcan be observed that at stage I ofthe multicast banyan network there isno blocking

if only one of the following three situations is allowed to occur at each switching

element.

• one packet which destined to both groups and the other packet is an empty

packet.

• two packets where one packet is destined to one group and the other is

destined to the other group
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• one packet which destined to only one group and the other packet is an empty

packet.

In order to achieve the above objective,a sorting network is used to rearrange the

pattern of the arriving packets. The sorting network sorts the packets using the 2-bit

fieldat level 1. Let the sorting network sort the packets into non-ascending order.

After the sorting procedure, the sequence of the packets appears at the outputs of the

sortingnetwork is:both groups, even group, empty, and odd group.

Using a shuffleinterconnection to connect from the outputs of the sorting networks to

the inputs of stage I ofthe banyan network, itisguaranteed that there isno blocking at

stage 1 (seeFigure 21).

It has been shown that there is no blocking at level i of the network, where level 1

consistsof one sortingnetwork with sizeN and stage I of the banyan network_

The operation of each switching element at stage 1 of the banyan network is described

as follows. The switching element routes the packet to the upper link ifthe 2- bittag is

destined for the even group; it routes the packet to the lower link ifthe 2-bit tag is

destined for the odd group; itroutes and copiesthe packet to both links ifthe 2-bittag is

destined for two groups. Theempty packet is deleted ifthe other packet at the other

input is destined to both groups; otherwise, the empty packet is sent to the next level.

In summary, the 2-bitrouting bitsat level 1 are used for sorting for the N x N sorting

network and routing forstage i ofthe banyan network.

After level1,the packets have been divided into two groups according to the destination

routing tags;the packets destined to the even group are routed to the upper subnetwork

and the packets destined to the odd group are routed to the lower subnetwork. Level 2

of the routing tag is used for routing at level 2 of the network which consists of two

sorting networks with size N/2 in parallel and stage 2 of the banyan network. The

upper subnetwork (or the lower subnetwork) consistsof one sorting network with size

N/2 and the upper half (or the lower half) of stage 2 of the banyan network.

The upper subnetwork with size N/2 uses the first 2 bits at level 2 of the routing tag,

and the lower subnetwork with size N/2 uses the second 2 bits at level 2 of the routing

tag for routing. The same routing procedure as in level 1 is applied at each subnetwork_

This operation is repeated at every leveluntil the lastlevel. At the lastlevel, the size

of each subnetwork is 2. Hence, no sorting network is required in thislevel. The last

levelof the network only consistsof stage Log2 N ofthe banyan network.

The output ports ofthe switch check the routing tag of the arriving packet to determine

ifitisan empty packet or not. Ifitisan empty packet,itwillbe discarded. The logicto

perform thisoperation isvery simple, which only needs to check a 2-bitfield.
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Congestion Issue

Increasing switch speed is often necessary to improve the throughput of the switch. In

this case, accumulation of packets may occur at the input port or at the output port.

The shii_of congestion between input port and output port may be an effectivescheme

for point-to-pointconnections; however, for point-to-multipointconne_ions, thisscheme

may not be effectiveor become very complicated. For example, ifone of the destined

output ports ofa multicast packet isin congestion, shall we delay the transmission of

the multicast packet to the congested output port only or shall we delay the

transmission of the multicast packet to all the destined output ports. This is not a

simple problem since the quality of service for allthe point-to-multipoint connections

may have to be satisfiedconcurrently. It is suggested that congestion control of a

multicast switch be examined in detailin the future.

c. Multicast Modules at the Output Port

In this approach, there are multiple multicast modules at the output ports. All the

multicast packets are relayed to these multicast modules firstthrough a point-to-point

nonblocking switching fabric. And then the multicast modules send the multicast

packet to the destined output ports through a point-to-multipointnonblocking switching

fabric (see Figure 22). The number of multicast modules required depends on the

amount of multicast traffic.

._ input Port 0

I
-_ Input Port 1

I
._ Input Port 2

!

-_ input Port 3

_. Input

1

Port N-1 I'_

I Output Contention IResolution Module

Point-to-Point

Nonblocking
Switching Fabric

l

Multi-Cast Module 0

I
I OutportPort0

I
' I Ou_ort Port 1

Mul6-Cast Module m-1

m:the number of multicast modules

Figure 22. Multicast Modules at the Ouput Ports

Multi-Cast
Bus Network
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The multicast knockout switch uses a similar approach [16] as shown in Figure 23. The

knockout switch uses the bus approach to interconnect the inputs and outputs. There

are N broadcast buses in the switch for the point-to-point applications. For point-to-

multipoint applications, extra multicast modules are required. If there are M multicast

modules, then the total number of buses is N + M and the size of the switch becomes N x

(N+M). There are (N+M) filters at each bus interface of the output port, where each

filter is for one input; hence, the total number of filters for the switch are N 2 + NM. It

can be seen that the complexity of the bus interface is very high. The desired point-to-

point switching fabricisthe banyan-type network, which isassumed to be the switching

fabric in the discussion below. If the banyan-type network is used as the switching

fabric,then the number of filtersnecessary for the bus interfaceat each output port is

only M, where M isthe number of multicast modules.

The output port reservationscheme such as the ring reservationscheme iscoupled with

the multicast module scheme so that the output port reservation scheme can be done

not only for point-to-pointconnections but alsofor multicast connections. The multicast

module istreated as one of the input ports by the output reservation module. The start

of the token stream alternates among N input ports and m multicast modules. Some

multicast destination ports are free and some are busy during the output reservation

process. As before, it is assumed that the multicast module has the call splitting

capabilitysuch that the transferof the multicast packet can be partiallycompleted. In

thiscase, a multicast packet may have to use several slotsto complete the transmission

ofthe packet to differentdestinations.

Congestion Issue

Depending on the trafficdistribution,accumulation of packets may occur at the input

port or at the multicast module, but not at the output port. If the switch speed is

increased, accumulation of packets may also occur at the output .port.Since there axe

three modules involved in congestion control, multicast module at the output port

scheme may have the most complicated congestion controlprocedure.

3.2.2 Path Setup Scheme

For a blocking switching fabric,the packet transferscheduling algorithm has to be able

to resolve output contention and interz/alblocking at the same time. There are two

basic schemes ofimplementing the packet transferprotocol:

setup packet phase + transfer packet phase protocol with increased switch

speed (or multiple parallel switching fabrics)using input buffering/output

buffering.

transfer packet phase + retrausmission packet phase with increased switch

speed (or multiple parallel switching fabrics) using input buffering/output

buffering.
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A briefdescriptionof the above protocolshas been provided in the previous subsection.

Both protocols are very similar. The setup packet phase + transfer packet phase

protocol isused as the representative to describe the operation of the switches in this

subclass.

For a blocking switching fabric,input queueing is a necessity to perform the packet

transferprotocol.Several exm_ples are described below.

3.2.2.1 Unbuffered Banyan Switch with an Increased Switch Speed

The operation is described in the following section for a more general case. The

maximum throughput of a switch with a blocking banyan switching fabricfor different

sizes has been reported in [6]. According to [6],the throughput of an 8 x 8 switch is

about 0.51;the throughput of a 16 x 16 switch isabout 0.45;the throughput ofa 32 x 32

switch is about 0.40; the throughput of a 64 x 64 switch is about 0.36. These

throughputs are too low to have any practicalapplications. One way of improving the

throughput isto operate the switch at a higher speed. Ifthe switch isoperated n times

fasterthan the link speed, then each packet at the input port has n chances to try to set

up a path through the switch within one link slottime. Hence, the throughput of the

switch is greatly increased. Since more than one packet can arrive at one output port

within one linkslottime, output queueing isnecessary tohold the packets.

3.2.2.2 Parallel Unbuffered Banyan Switches

In thisscheme there are p copiesof banyan networks stacked in paralleland there are p

transmitters at the input port,p receivers at the output port, and output buffering.

This switch can be operated in two ways. The firstapproach isintroduced below. In the

path setup phase, the setup packets at the input port are loaded into different

transmitters. To avoid out-of-sequence transmission, only the packets with distinct

destination addresses can be loaded into the transmitters. The setup packets at

differenttransmitters are sent to differentcopiesrandomly at the same time. Since the

output port has multiple receiversthat can receivemore than one packets from different

input ports at the same time, the throughput is increased and output buffering is

required.

In the second aproach, there are p minislots reserved forthe packet setup phase. These

p minislots are considered system overhead. For each input port, at minislot 1, the

packet at the firsttransmitter triesto set up a path using the fLrstcopy. Ifthe packet

encounters blocking eitherat the switching fabricor at the output port,the packet uses

the second copy to set up a path at the second minislot. Ifthe packet successfullysets

up a path at minislot 1,then the packet at the second transmitter can use the second

copy to setup a path at minislot 2; and so on. In this sequential searching algorithm,

the maximum number of reserved minislots to setup a path for the packet at the first

transmitter isp. The maximum number of reserved minislots to setup a path for the

packet at the second transmitter isp-l; and so on. Note that corresponding to each

minislot ofthe setup phase, a differentcopy isused forsettingup the path fora packet.
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3.2.2.3 Unbuffered Multicast Banyan Switch

The size of the routing tag of a multicast packet used in a blocking multicast banyan

network is N [17], where each bit in the muting tag is associated with each output port.

There are two registers, one for each output, holding control bits at each switching

element (see Figure 24). The operation of each switching element is to AND the muting

tag of the packet and the control bits at each register. If the result of the AND

operation is 1, a copy of the packet is sent to the output. If the results of the AND

operation for both registers are all 1, a duplication of the packet has been made in the

switching element

Although the packet transfer protocol of a point-to-pointblocking banyan switch can

also be applied to the multicast blocking banyan switch, the packet transfer protocol of

the latter is more complicated than that of the former. The major differences are as

follows. The multicast setup packet has to carry a multiple-destination muting tag. As

mentioned above, the size of the muting tag is N. For the point-to-point blocking

switch,the ACK signal sent from the output port to the originatinginput only needs one

bit. However for the point-to-multipointblocking switch, the ACK signals willbe sent

back from more than one output ports to the originating input port. Since there are

more than one ACK coming back to the originatinginput port,ifthese ACKs are allsent

back at the same time, they willeithercollideat some switching element or at the input

port and losethe information contained in the ACK signal. One way of avoiding conflict

at the switching fabricand at the input port-isthat the TDMA scheme isapplied for the

ACKs from differentoutput ports to the original input port. The packet setup phase

consists of two parts. The firstpart isthat every input port sends an N-bit muting tag

through the switching fabric.The second part isthat every output port sends back the

ACK to the originatinginput port using the assigned minislot. Output port 0 sends its

ACK back to the originating input port using minislot 0; output port 1 sends itsACK

back to the originating input port using minislot 1; and so on. Correspondingly, the

input port checks whether there is an ACK at each minislot time and determines the

packet transfer sequence ofthe multicast packet forthe next slottime.

Congestion Issue

Congestion control of the blocking switch is very similar to the nonblocking switch.

When congestion occurs,there are two ways of relievingcongestion. The firstone isto

shiR congestion to an uncongested port. The second one isto throttlethe sending earth

stationby continuously broadcasting the queueing length information to allthe ground

stations. However, the congestion control procedure is complicated by the multicast

operation. As discussed before, the key issue is what do we do about the multicast

packet ifone ofthe destined output ports isin congestion.
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3.2.3 Address Filter Scheme

In this subclass ofswitches,there isa disjointpath between each input and output pair.

Thus, the switching fabricisboth point-to-pointand point-to-multipoint nonblocking.

The packet transferprotocoluses the forward-and-store approach. The forward phase is

used to transmit the arriving packets to differentoutput ports since the packets are not

stored at the input ports. Each output has filtersto selectthe packets destined to itself.

To resolve output port contention, more than one packets are allowed to arrive to one

output port at the same time; hence, multiple receivers and output buffering are

required to storethe packets. Note since the switching fabricisnonblocking, there isno

internal blocking problem and since the buffers are located at the output ports,there is

no head oflineblocking. For the above reasons, the throughput of a switch with output

buffering is higher than that with input buffering [5]. Two examples are provided as

follows.

3.2.3.1 Knockout Nonblocking Switching Fabric with Output Buffering

The knockout switch shown in Figure 25 uses the bus approach to interconnect the

inputs and outputs [16].There are N broadcast buses, one from each input port,in the

switch, and there a_reN filtersat each bus interface of the output port. The total

number offiltersfor the switch isN2.

Since there is a disjoint path between any input-output pair in this topology, there is no

internalblocking. The packet transfer protocol uses the forward-and-store scheme with

output buffering;hence, there isno HOL blocking. The N filtersat each output port

performs as N receiverswhich can receive N arriving packets at the same time. ARer

the N receivers,there isone output buffer which performs as a statisticalmultiplexer.

The amount of buffering required at each output port depends on the packet loss ratio

requirement.

Congestion Issue

Since only output buffering is employed, congestion only occurs at the output port.

Congestion controlcan be achieved by monitoring the output queue length continuously

and broadcasting the information to allthe ground stations. The ground station delays

the transmission ofthe packet whose destined downlink beam isin congestion.
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3.3 Throughput Performance

This subsection addresses the throughput performance of two switches using computer

simulation techniques. These switches are:

a. point-to-pointnonblocking switching fabricwith input buffering.

b. point-to-multipoint nonblocking switching fabric with input

buffering.

The impact on the switch throughput resulting from an increased switch speed and an

improved output contention algorithm is analyzed. The effect of traffic imbalance on the

throughput is also studied.

3.3.1 Simulation Models

The simulation isbased on discrete-eventsimulation. The simulation isperformed on a

SUN SPARC workstation using the OPNET simulation package from MIL 3, Inc. Two

switch models are described below.

Model A:

• switch size: 8 x 8

• switching fabric:point-to-pointnonblocking

• switch buffering:input

• output contention resolutionscheme: input ring reservation

Model B:

• switch size: 8 x 8

switching fabric:point-to-multipointnonblocking

switch buffering: input

• output contention resolutionscheme: input ring reservation

The simulation model shown in Figure 26 consists of trafficgenerators, input ports, a

switch fabric,output ports, and a token generator. The trafficgenerators generate

packets following Possion distribution.The input port storesthe arriving packets. The

token generator associated with the input ports performs output reservation for the

arriving packets. The switch fabricroutes the packets to the destined output ports.

Depending on whether the switch speed is higher than the input link speed, the

function of the output port isdifferent. Ifthe switch speed isequal to the link speed,

the output port is only a sink. Ifthe switch speed is higher than the link speed, the

output port performs as a statisticalmultiplexer with a FIFO queue.
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The throughput of a switch with input queueing is limited due to the head of line

blocking problem. As previously mentioned, one method to improve the throughput isto

use a non-FIFO queue. Ifthe firstpacket isblocked due to output blocking,the output

reservation algorithm examines the packets at the back of the firstpacket in the queue.

The number of packets examined each time (orthe checking depth) isa parameter. The

other method to improve the throughput is to increase the switch speed, which is

another parameter.

The parameters to be varied forModel A are as follows:

• switch speedup, i.e.,switch speed/linkspeed (s)

• input link utilization

• checking depth (d).

All the discussions about the point-to-pointswitch simulation model can be applied to

the point-to-multipointswitch simulation model, since the former isa specialcase of the

latter. The traffic generator generates two types of packets following a certain

distribution. One is the point-to-pointpacket and the other one is the multicast packet.

For a point-to-pointswitch with a given input link utilization(assume that the input

link utilizationsat differentinput ports are uniform), the trafficintensity through the

switch is determined, i.e.,the average link utilizationis the trafficintensity. For a

multicast switch, three more parameters are required to determine the traffic_intensity.

The firstone is the multicast packet ratiodefined as the ratioof the number multicast

packets to the totalnumber of arriving packets. The next two parameters are the lower

bound and the upper bound ofthe number of destinationseach multicast packet c,_des.

The lower bound isalways largerthan or equal to 2. The upper bound isalways smaller

than or equal to the switch size. For simplicity,the lower bound is assumed to be 2 and

the upper bound is assumed to be the switch size,i.e.,8. Assume that the number of

destinations each multicast packet carriesfollowsthe uniform distributionbetween the

lower bound and the upper bound. Given a multicast packet ratio(mr), multicast lower

bound (2),multicast upper bound (8),and input link utilization(p),the trafficintensity

(Pi)can be calculated as follows.

2+8
Pi= p*rnr* _ + p ( I-mr) = p (i + 4mr)

Note that the value of Pishould be always lessthan 1.

A table of Pi is shown in Table 1 for different p and mr.
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Table 1. Traffic Intensity for Different mr

Pi mr = 0.05 mr = 0.1 mr = 0.15 mr = 0.2

p = 0.4 0.48 0.56 0.64 0.72

p = 0.45 0.54 0.63 0.72 0.81

p = 0.5 0.60 0.70 0.80 0.90

p = 0.55 0.66 0.77 0.88 0.99

Parameters to be vai-ied for Model B are given below:

• switch speedup, i.e., switch speed/link speed (s)

• input link utilization

• checking depth (d)

• multicast packet ratio (mr).

3.3.2 Simulation Results

Simulation has been conducted for an 8 x 8 switch. Although ATM parameters are used

in simulation (a switch speed of 155.52 Mbiffs and a packet size of 424 bits), the

simulation results presented herein are applicable to other system parameters as well

(i.e., the simulation results are not affected by a particular switch speed or packet size).

The objective of the simulation is to obtain the saturation throughput of the switches.

Without increased switch speed, the throughput is defined as the average number of

packets arriving at the output ports in one link slot divided by the switch size, where a

link slot is defined as (packet size/input link speed). The input buffer size is assumed to

be infinite.

The firstset of resultsshows the effectivenessof a larger checking depth to improve the

throughput. As seen from Figure 27, the improvement ofthroughput gets lesswhen the

checking depth gets larger. For a checking depth of 2, the throughput can reach 0.73;

for a checking depth of 3, the throughput is 0.79; for a checking depth of 4, the

throughput is 0.83. For a real application,itis not cost effectiveto use a very large

checking depth to improve the throughput. The best approach isto use a small checking

depth such as 3 or 4 and to increase the switch speed to make the switch throughput

close to 1.
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Figure 27. Throughput Performance of the 8 x 8 Point-to-Point Switch for Different
Checking Depths

The second set of results shows the effectiveness of increasing switch speed to improve

the throughput. As shown in Figure 28, the improvement of throughput is proportional

to the increase of the" switch speed, which is very effective.
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Figure 28. Throughput Performance of the 8 x 8 Point-to-Point Switch for Different
Speedups
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The third set of results shows the effectivenessof a larger checking depth for the point-

to-multipoint switch (see Figure 29). As in the point-to-point switch case, the

improvement of throughput gets lesser as the checking depth gets larger. For a

checking depth of 4 and a multicast packet ratio of 0.1,the saturation throughput can

achieve 0.89•
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4_-T(rnc,s=l,rnr=O.1)

s: switch speedup
d: checking depth
mr: multicast ratio

Figure 29. Throughput Performance of the 8 x 8 Point-t_Multipoint Switch for
Different Checking Depths when the Multicast Packet Ratio is 0.1

The fourth set ofresultsshows the effectivenessof increasing switch speed forthe point-

to-multipoint switch. The improvement of throughput isproportional to the increase of

the switch speed, which isvery effective.Figure 30 shows the throughput performance

when the multicast ratiois0.1 forevery input port,and Figure 31 shows the throughput

performance when the multicast ratiois0•2• for every input port.

There are two forms of trafficimbalance for the point-to-pointswitch. The firstone is

the nonuniform output destination distributionexperienced at each input port. The

second one isthe nonuniform input linkutilizationamong differentinput ports.

The purpose ofthisset ofresultsisto illustratethat certain trafficimbalance situations

willreduce the saturation throughput, and as a result congestion may occur. It is not

intended to enumerate allthe possibletrafficimbalance situations.
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Figure 30. Throughput Performance of the 8 x 8 Point-to-Multipoint Switch for

Different Speedups when the Multicast Packet Ratio is 0.1
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The traffic imbalance situations and their associated saturation throughputs are shown

in Figures 32 to 35. Figures 32 and 33 show the effect of nonuniform output destination

distributions on the saturation throughput. Although the total incoming traffic

intensity is the same as that in the uniform case, the throughput of a switch with a

nonuniform output destination distribution is lower than that of a switch with a

uniform output destination distribution. It can be seen that if the distribution curve is

narrower, the reduction of the throughput is also larger. Figures 34 and 35 show the

effect of nonuniform input link utilizations on the throughput. If the mean utilization

difference among different input links is larger, the reduction of throughput is also

larger: The combination of a nonumform output destination distribution and a

nonuniform input link utilization worsens the throughput performance. The reduction

of the throughput is not the sum of the reduction from each case. For example, the

reduction of the throughput in Figure 33 is 0.08 and the reduction of the throughput in

Figure 34 is 0.074; the reduction of the throughput for the combined effect of Figures 33

and 34 is 0.09.

The traffic imbalance for the point-to-multipoint switch is much more complicated than

that of a point-to-point switch. The possible traffic imbalance situations include the

following:

• nonuniform output destination distribution

• nonuniform input link utilization

• nonuniform multicast packet ratio

• nonuniform distributionfor the number of destinations that each multicast

packet carries.

From the simulation, it is found that the saturation throughput is quite insensitive to

the multicast packet ratio distribution for different traffic generators. For example, in

Figure 36, the reduction of throughput is only 0.01 compared with that of a switch with

a uniform multicast packet ratio of 0.1. The effect of the nonuniform distribution for the

number.of destinations that each multicast packet carries depends on the average

number of destinations. For the uniform case, the average number of destinations that
2+8

each multicast packet carries is -_- = 5. If the average number of destinations each

multicast packet carries for the nonuniform case is larger than 5, the saturation

throughput is increased; otherwise, it is decreased.

Note that the purpose of above discussion is to illustrate the effect of traffic imbalance

on the saturation throughput for an 8 x 8 switch. To understand the effect of traffic

imbalance, traffic correlation, and time varying traffic on the saturation throughput, a

further research effort is needed.
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3.4 Summary of Switch Contention

Two types of fast packet switching architectures, i.e., contention-free switching

architecture and contention-based switching architecture, are considered in the

previous sections. The contention-free switching architectures, by definition, are free

from contention. This type of switching architecture, however, has a capacity limited to

several Gbit/s. This is more than sufficient for the total system capacity required for the

64-kbit/s packet service (590 Mbit/s). However, for a larger system with a capacity of 10

Gbit/s or higher, the contention-based switching architecture is more appropriate. In

"general, the most common contention-based switching architecture discussed in the

literature and implemented in the industry is the multistage switching architecture.

For the multistage switching architectures,scheduling of packet transfer at the input

ports is necessary to avoid output contention. Several packet transfer scheduling

algorithms are described forbeth nonblocking and blocking switching fabrics. Among

them, the input ring reservation scheme for the nonblocking switching fabric attracts

most attention due to its easy implementation and versatile applications. For the

multistage switching architecture,the throughput can not reach 1 due to head of line

blocking at the input ports. Two schemes to improve the throughput ofthe multistage

switching architecture are discussed. The firstone uses a larger checking depth for

each input port, and the other is to increase a switch speed. To fullyunderstand the

effectivenessofthese schemes, simulation isperformed.

An 8 x 8 fastpacket switch with a nonblocking switching fabricis used as the switch

model for throughput performance analysis. Simulation models are built and
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experimental sets are run to collectthe throughput results. From the simulation

results,the improvement of throughput is proportional to the increase of the switch

speed. For an 8 x 8 point-to-point fast packet switch, the switch speed has to be

increased by 65% to reach a throughput of 1. Simulation resultsalso show that a larger

checking depth is an effectiveway of improving the throughput. However, since the

improvement of throughput gets less when the checkingdepth gets larger,it is not

practical to use an extremely large checking depth. The best scheme to improve the

throughput is to use a checking depth of 3 or 4, and also to increase the switch speed.

For an 8 x 8 point-to-point fast packet switch, with a checking depth of 3 or 4, the swi.tch
speed has to be increased by 20% to 27% to achieve a throughput of i. For a point-to-

multipoint fastpacket switch, the throughput is determined not only by the input link

utilizationbut also by the multicast packet ratio. For an 8 x 8 point-to-multipointfast

packet switch with a multicast packet ratio of 0.1 and a checking depth of 3 or 4, the

switch speed has to be increased by 12% to 15% toachieve a througl_put of 1.
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4 On-Board Switch Output Multiplexing

Trafficchannels routed through circuitand packet switches are multiplexed by a TDM

frame formatter to generate dwell trafficbursts for each downlink beam. This section

addresses a number of system issues involving a TDM frame formatter and alternate

design approaches. Based on the discussions in the previous sections,the following

assumptions have been made to analyze system design issues:

a. Routing of a circuitswitched trafficchannel isdeterministic for the duration

ofa callconnection

So

Co

Switch contention resolutionand address filteringfordata packets have been

properly performe d such that the input to the TDM formatter consistsofonly

the data packets destined to the designated downlink beam

Routing ofmulticast trafficchannels (beth circuitand packet switched traffic)

to differentdownlink beams has been properly performed such that the TDM

formatter only needs to perform multicast trafficprocessing for the dwell

areas within one downlink beam

d. According-to Section 2,"the system provides the following trafficcapacity

(Table 2):

Table 2. System Capacity

TRAFFIC TYPE TOTAL BEAM
CAPACITY (Mbit/s)

I H v

TOTAL SYSTEM

CAPACITY (Mbit/s)

CircuitSwitched Traffic 81.92 737.28

Packet Switched Traffic 65.536 589.824

Total Traffic 147.45.6 1327.104

The capacity values shown in the table do not include signaling channels and

control/statusmessages that are necessary for system operation, and hence

actualvalues may be slightlyhigher than those given in the table.

e. A baseband switch architectureUtilizesoutput buffering,such as a TDM bus

with distributed output memories, a fiberoptic ring switch, or a multistage

banyan-based switch. (The general discussion presented below is also

applicable to other types of switches,such as a common memory switch, but

requires some modification.)

The system design issues addressed in the followingsections include a downlink TDM

frame structure,buffer implementation options,multicast trafficprocessing,and buffer

sizes.
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4.1 Downlink TDM Frame Structures

Downlink hopping beam transmission requires a minimum of eight TDM bursts, one for

each dwell area. Two types of TDM frame structures are considered in the following.

The first structure, depicted in Figure 37, consists of eight dwell area reference bursts

(RBs) and up to eight traffic bursts (TBs). The RB provides a reference timing to all the

earth stations within the designated dwell area and includes network control messages

for uplink carrier frequency allocation/deallocation, frame numbers, a downlink traffic

burst position, circuit slot assignment, and other control/status information. Each RB is

assigned a unique identification code to distinguish it from other RBs to the adjacent

dwell areas or to the adjacent beams. The TB carriers traffic channels to a designated

dwell area. If some dwell area has no traffic, there will be no traffic burst assigned to
the dwell area.

L.
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TB
CBTR
UW
RB ID
TB ID
CKT
PKT
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liiii_i!iii!l! ! I I I I IIiii!ili_ii!il...........................i!!_!i_i!i............................0oco...0opoPo
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Reference Burst TRAFFIC
Traffic Burst

Carrier and Bit Timing Recovery
Unique Word
Dwell Area Reference Burst Identification
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Packet Switched Traffic Channel

PACKET SWITCHED
TRAFFIC
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r

Figure 37. Downlink TDM Frame Structure with Dedicated Reference Bur_ts

In this flame structure, the RB locations are prefLxed and will not be affected by

downlink time plan changes. An obvious shortcoming is a less efficient frame utilization

due to additional guard times and preambles required for multiple bursts per dwell

area.
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The second TDM frame structure, shown in Figure 38, overcomes this shortcoming by

combining the two types of bursts. There will be exactly eight dwell area bursts in one
frame. If there is no traffic to a certain dwell area, only the preamble and control

message field will be transmitted to the area.

DOWNLINK TDM FRAME _'_I- !

DWELLAREA It DWELLAREA J .., DWELLAREA ]BURST 1 BURST 2 _ BURST 8

I

i!i!i::i!i::i::i::i::i::iii::ili::i_iil iiiiii_iiiiiiiiiil I i""J i 1"'"
CIRCUIT SWITCHED PACKET SWITCHED

TRAFFIC TRAFFIC
CBTR Carrier and Bit Timing Recovery
UW Unique Word
CKT Circuit Switched Traffic Channel
PKT Packet Switched Traffic Channel

I

JP J

•Figure 38. Downlink TDM Frame Structure for Single Burwt per Dwell Area

The shortcoming of this frame structure is that the burst positions may change as a

traffic volume to one area increases or decreases, and implementation of frequent

downlink time plan changes may not be as reliable as in the previous frame structure.

In addition, the earth station requires special coordination with the on-beard processor

(or the network control center) during initial receive timing acquisition such that the

given downlink burst does not change its position until the completion of the acquisition

process.

Between the two frame structures described above, the first structure is operationally

more flexible than the second. To assess the impact of a higher overhead on frame

efficiency, consider a burst overhead of 128 bits (guard time, a carrier-and-bit-timing-

recovery pattern, and a unique word) and an RB control field size of 128 bits. Table 3

shows a comparison of frame inefficiency resulting from burst and frame overheads for

the two types of frame structures. For a frame period of 0.5 ms or longer, the resulting

frame inefficiency is less than 5 percent. For a frame period of 250 I_S, the frame

inefficiency figures for the dedicated RB and single dwell burst techniques are

respectively 8.3 and 5.6 percent. The downlink transmission rate must be increased

accordingly to maintain the nominal transmission capacity. In general, there is no

significant difference in frame efficiency between the two types of frame structures for a

frame period of 250 Its or longer, and hence the first TDM frame structure is preferred

for implementation.
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Table 3. Frame Inefficiency

i

FRAME PERIOD DEDICATED
(ms) REFERENCE BURST

SINGLE BUP,S! PER
DWELL ARF_

0.25 8.33% 5.56%

0.5 4.17% 2.78%

1.0 2.08% 1.39%

2.0 1.04% _ 0.6_

4.0 0.5_/o 0.35%

8.0 0._ 0.1P/.

4.2 Multiplexer Implementation

4.2.1 Implementation Options

The TDM frame formatter includes a buffer to perform a speed conversion from the

baseband switch speed to the downlink transmission rate, multiplexing of circuit and

packet switched traffic, TDM formatting, and queueing for packet switched traffic. A

multiplexer can be implemented using two separate buffers for circuit and packet

switched traffic or a single shared buffer. These two approaches are illustrated in

Figures 39 and 40. Also included in the figures are an RB and preamble generator and

a TDM controller. In actual implementation, the content of the RB (e.g., control

messages) is generated by the autonomous network controller (ANC) and routed to the

TDM frame formatters through a baseband switch, and a preamble pattern is a fixed bit

sequence prestored in the designated memory locations.
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Figure 39. Separate Buffers for Circuit and Packet Switched Traffic
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Figure 40. Shared Buffer for Circuit and Packet Switched Traffic

Between the two approaches for output buffering, the shared memory approach provides

more flexibility and better memory utilization. For example, the given storage capacity

can be "dynamically allocated to circuit and packet switched traffic according to their

traffic intensities. In an extreme case, the entire memory can be dedicated to one type

of traffic, provided that the beam does not have the other type of traffic. The following

discussions assume the shared memory approach.

4.2.2 Buffer Size

Circuit switched trafficgenerally requires at least one frame of buffering for rate

conversion, time slot interchange (from uplink, to downlink), and TDM formatting.

Although a shorter TDM frame period isdesirable in terms of hardware complexity, it

decreases downlink frame efficiency.According to Table 3, the selection of a frame

period of 0.5 ms results in a frame inefficiencyof 4.17 percent and is considered for a

baseline design. The buffer size required for supporting circuitswitched trafficis a

modest 5.12 kbytes per beam. One TDM frame corresponds to 32 bits for a 64-kbit/s

trafficchannel and 1,024 bitsfor a 2.048-Mbit/suplink carrier.

The destination dwell areas for packet switched traffic are non-deterministic and

randomly change from one frame to another. Thus, the buffer requirement for packet

switched traffic must consider the impact of statistical distribution of packet

destinations. To achieve a packet loss ratio of 10 -9 at a traffic loading factor of 0.9 and

uniform distribution, the buffer must accommodate about 96 packets per beam [18]

which corresponds to 6.15 kbytes of storage for a packet size of 512 bits. Another factor

to be considered is a staggered TDM burst operation to different dwell areas, as shown

in Figure 41. Packet switched traffic may be concentrated at the beginning or the end of

a down]ink TDM frame. This implies that packets may be queued on the satellite for up
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Figure 41. Distribution of Packet Switched Traffic in Downlink TDM Frame

to 278 Its (81.92/147.5 x 0.5 ms) prior to downbeam transmission, and the buffer size for

this queueing is 2.28 kbytes. Thus, the buffer requirement for packet switched traffic is

8.43 kbytes.

The total buffer size required for shared memory operation is the sum of the buffer sizes

for circuit and packet switched traffic and is 13.6 kbytes. A memory configuration

depends on the switch structure, switch speed, and memory access speed selected. A

multistage banyan-based switch may require a switch speed of around 200 Mbit/s,

resulting in a memory configuration of 16K x 8 or 8K x 16 with an access speed of 20 ns

or 40 ns, respectively. For a high-speed optic ring, the same memory configuration

requires an access speed of 5.5 ns (16K x 8) or 11 ns (8K x 16). The memory access

speed can be reduced with a wider memory width or the use of ping-pong memories.

To ensure no data loss operation for circuitswitched traffic,a storage space of 5.12

kbytes may be reserved. This space may also be used by packet Switched trafficon a

contingency basis. A temporarily leased space for packet switched trafficmust be able

to be vacated in about 270 ms fornew circuitswitched calls,ifneeded.

Multicast traffic channels (both circuit or packet traffic) may be replicated and stored in

multiple memory locations along with their destination dwell area information.

Alternately, replication may be performed at the time of downlink transmission. The

former requires a larger memory space than the latter. However, there will be no

significant impact on overall performance, since the allocated buffer size is large enough
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to handle the peak traffic volume (i.e., -150 Mbit/s). In this regard, either replication

method is acceptable.

The TDM controller monitors a packet queue for each dwell area and controls the

amount of packet transmission within the allocated burst lengths. Because of the

statistical nature of packet switched traffic, the distribution of a queue for different

dwell areas is often uneven, and from time to time a queue length for some dwell area

becomes significantly larger than for others. In this situation, the burst lengths to those

areas with larger queues may be expanded by sending new time plans to the affected

areas. The new,downlink time plans will be implemented by the earth stations at a

designated frame number. This procedure does not involve transmit traffic

reconfiguration and can easilybe implemented by the ANC within a few frame periods

upon detection of a potential congestion state. Figure 42 illustratesa time plan

switchover process. The dynamic capacity allocationbased on dwell area queue status

will relax an on-board congestion problem. A detailed analysis is recommended to

quantify the improvement.
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Figure 42. DownUnk Time Plan Switchover Process
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5 Integrated Circuit and Packet Switched System

On-board switching provides multimedia (voice,video, and data),multipoint (point-to-

point, point-to-multipoint,and broadcast),and multirate services. In this section,an

integrated switch isconsidered to provide unified switching/routing for both circuitand

packet switched traffic. Compared with the two switching system scenario, the

integrated switch has the following advantages. Integration simplifies the network

management functions and makes the introduction of new services with different

characteristics easier. It _so provides simpler implementation and control, less

hardware, easy fault tolerance and redundancy structures,reduced mass and power,

and unifiedrouting procedure. Most importantly, the integrated switch ismore flexible

in allocatingthe capacity ofthe switch between circuitand packet switched traffic.The

following presents a design approach to an integrated switch using a multistage

network.

The circuit trafficis segmented into packet formats at the sending stations and

reassembled into channel formats at the receiving stations. Both packet and circuit

data have the same packet format. The uplink uses the slotted transmission format.

The unified packet format occupies one slot of uplink frame. The integrated access

scheme uses the combination ofTDM and packet transmission. (TDM isconventionally

used forcircuitswitching while packet transmission uses statisticallymultiplexing.) An

integrated switch can provide services for both circuitswitched and packet switched

data and, at the same time, preserve the QOS for each class. A space switch without

the time stage issufficientto route both circuitswitched and packet switched traffic.

The packet structure contains the synchronization header, indication field, destination

address, source address, control field, information payload, and forward error control

(FEC). Note that the FEC can be used for synchronizing the packet as the cell

delineation algorithm performed in ATM cell synchronization. In this case, the

synchronization header is not required. Whether the routing tag of the packet should be

prepended at the earth station or on-board the satellite largely depends on the link

efficiency (routing tag size) and on-board translation table complexity. For point-to-

point connections, since the size of the routing tag is very small (only Log N), it is

suitable to generate the routing tags at the earth stations. For point-to-multipoint

connections, the routing tag is at least N bit long. A trade-off has to be made to

determine where to prepend the routing tag.

Since a fast packet switch routes a packet to the destined output port based on the

routing tag,whether the packet contains circuitdata or packet data willbe transparent

to the switch. Hence, the operation of the fastpacket switch described in Section 3 can

also be applied to the integrated switch. However, since circuitswitched data comes

into the system almost periodicallyand has a more stringent performance requirement

(such as delay jitter)than the packet data, the operation of the switch has to be

modified accordingly. Potentialmodification areas include a packet transfer scheduling

algorithm and bufferspace allocation.For output contention control,prioritycontrolis

required to guarantee a certain high-QOS circuitswitched data to pass through the
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switch faster than the other services. Priority control of the fast packet switch is

performed during the packet transfer scheduling phase. If_two packets are competing
for the same link (internal bIocking) or competing for the same output port (output

contention), the packet transfer scheduling algorithm guarantees that a high priority

packet will win over the low priority packet. If two packets have the same priority, they

will be competing on an FCFS basis. A possible implementation of priority control for a

point-to-multipoint nonblocking switching fabric with input buffering and input ring

reservation scheme is described as follows [19].

The format of the tokens is modified to accommodate priority control. There are N

tokens for the N output ports and there are N priority subfields for N tokens (see Figure

43). Whenever an input port reserves the output port, the priority of the packet waiting

in the queue is also inserted in subfield Pi, where i is the position of token i. Following

the same procedure in the input ring reservation scheme, the packet at the next input

port checks the availability of the output port. If the output port has been reserved,

then the input port checks the priority level associated with this token. If the priority

level is lower then its own priority level, the input port overwrites the priority field. If

this occurs, the input port whose priority subfield has been overwritten needs to be

notified. The notification scheme is very simple. After the packet transfer scheduling

has been finished for all the input ports, the token stream is sent back to the input ports

for conf_raation. Every input port checks the priority subfield associated with the token

to see if the priority is still the same as its own priority. If they are the same,

conf_'mation is achieved and the packet can be transmitted at the beginning of the next

slot. If they are different, it means some other packet with a higher priority at another

input port has overwritten the token and the result is the low-priority packet has to

retry the reservation request at the next slot time. In summary, the scheme circulates

the tokens through the input ports twice. Loop 1 is for the input ports to reserve the

output ports and loop 2 is for the input ports to confirm that the reservation of the

output ports has been successful. The same principle can also be applied to the switch

with a blocking switching fabric, which will not be repeated here.

PrioritySubfield Output PortAvailabilitySubfield

A i :outputporti availability

pi: : priorityof the packetthat requestsoutputport i

Figure 43. Token Format with Priority Subfield

Since circuit traffic comes into the system almost periodically, the buffer space for the

circuit data can be reserved in advance. In essence, the buffer space has been divided

into two portions. One portion is to reserve for the circuit switched data while the other

portion is shared by the packet switched data. Congestion control is required only for

packet switched data. The input buffer space for circuit switched data will be very

- 69-



small since the maximum delay encountered in the switch cannot exceed the QOS

performance requirement. Most input bufferspace isused for packet switched data. To

have an effectiveprioritycontrol,the buffer space may be completely divided so that

HOL blocking ofone traffictype willnot affectthe other traffictype.

-70-



6 Approaches to Congestion Problems

Congestion occurs when the demand for resources in the network, in this case the on-

board information switching processor (ISP), exceeds the capacity. Circuit-switched

traffic alone does= not induce congestion because the capacity is scheduled ahead of the
time the traffic arrives. With packetized traffic flowing through the switch, congestion

is inevitable, and proper congestion control techniques must be employed.

There are a whole range of trafficmanagement methods by which congestion in packet

networks can be avoided and controlled.The network trafficneeds to be characterized,

and proper congestion controlmethods must be applied to the network according to the

trafficcharacteristics.

The firsttrafficmanagement method isthe callor connection admission function. This

is an integral part of dynamic resoure assignment. When a request for a new callor

connection isreceived,thisfunction decides to eitheraccept or rejectthe request. Ifthe

decision is to accept the call, the network ensures the _availability of adequate

bandwidth based on the trafficcharacterizationofthe call(mean bit-rate,peak bit-rate,

mean holding time, peak burst duration,etc.) and the quality of service (QOS)

requirements (packet loss rate, maximum allowable delay, etc.). The acceptance

decision also reflectsthe fact that the existing callswithin the system willcontinue to

meet the QOS requirements without degradation. The callrejectiondecision reflects.

the factthat such guarantees are not possible eitherfor the new callor for the existing

callor for both. For circuit-switchedtrafficand for constant bit-rateservices,this is

relativelyeasy. But for-other types of traffic,this is difficult.It is obvious that a

conservative calladmission function willreduce the levelof congestion (not completely

eliminate it)but also lower the effectiveutilizationof the bandwidth. The goal is to

maintain a high levelof utilizationby accepting the maximum number of callspossible

and by managing the resulting congestion. This function may be implemented either

on-board the satellitewith directaccess to the buffer status of differentdownbeams, or

at the central management control center,or at the entry points to the earth stations.

Each locationhas itsown advantages and disadvantages, and a tradeoffisneeded.

Once callshave been admitted into the system, monitoring isnecessary to ensure that

the incoming trafficconforms to rates expected by the system, which may be the average

bit-rate,peak bit-rate,peak burst duration,etc. There needs to be a trafficflow control

or connection controlfunction of the input traffic.This may be most easilydone at the

access points of the network. This may be achieved by various means, by outright

discarding packets that exceed a certain threshold, by buffering and smoothing the

trafficstream to the desired rate within acceptable delay and jitter, by introducing

spacers with the leaky bucket algorithm. However, for finer control with greater

bandwidth utilization,packets in violationcan be tagged lower prioritywithin certain

limits and be allowed into the network with the assumption that in case congestion

occurs on the path, packets in violationwillbe discarded first.The ISP must perform

some form of trafficenforcement function. This needs an appropriate queueing scheme

to ensure: (a)packets not in violationhave greater prioritythan tagged packets and (b)
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if the network is not adversely affected and the QOS requirements of existing

connections met, the tagged packets are not discarded and delivered.

In spite of good call admission control and call parameter control, it is possible for

congestion to develop at intermediate points of a route. To combat this, so-called

reactive control has to be employed. These are explicit congestion notification with

source throttling based on either rate-based control or window-based control, in-call

parameter renegotiation. There exist various leaky bucket algorithms that have been

employed in the past with packet networks. Another method is to drop packets

selectively at intermediate nodes. The selection can be based on tagging packets on

violation as discussed before or by assigning a priority scheme.

Based on a number of techniques for congestion control, a thorough study of the entire

system and the expected traffic is necessary to determine the functions to be performed

on-beard the satelliteand at the ground stations.The specificimplementation schemes

for these functions could range from the various classicalmethods to certain recently

developed neural network techniques.

. k
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7 Conclusion

The contention problem in destination-directed packet switching, as investigated in

detail in this report, is not a major concern. It can be completely avoided using a

contention-fleeswitch architecture. The use of a fiberopticring,forexample, should be

able to provide a contention-freeswitching function for a total system capacity of about

2 GbitYs. As technology in optic devices and high-speed semiconductor devices

progresses,the totalswitching capacity can be significantlyincreased.

Contention, however, is an inherent property of multi-stage switching networks. The

techniques to resolvecontention include output port reservation and path setups prior

to packet routing. These techniques reduce a switch throughput by 20 to 40 percent due

to scheduling efficiencyand contention of path setup packets and require an increase in

switching speed by 25 to 67 percent to maintain the desired switch throughput. This is

based on statisticallyindependent packet transmission from uplink beams to different

downlink beams; otherwise, although thisisvery unlikely,the switching speed must be

increased further. With an increased switching speed, the contention problem will

virtually disappear.

Another technique to resolve contention employs dedicated paths from each input port

to different output ports and address filtering. Contention occurs at the output

concentrator because of a limited buffer size. Since a switch fabric is contention-free,

this problem may be regarded as a congestion problem.

Congestion is a more difficult problem associated with destination directed packet

switching. This problem isnot unique to satellitecommunications and in facthas been

extensively studied for terrestrialATM networks. Some of the techniques proposed for

terrestrialnetworks may not be effectivelyused for satellitenetworks because of long

propagation delay. To alleviatethe impact of this delay on the classicalcongestion

controlmethods, the predictivetechniques using neural network formulation may need

to be employed. A congestion control procedure must be devised as a part of overall

network control,including packet queue monitoring and buffermanagement by the on-

board processor and user earth stations,calladmission control at the user and network

levels, and satellitecapacity allocation procedures. It is recommended that the

congestion problem be investigated in a future study, since circuitswitching, as an

alternative to destination directed packet switching, is simply inadequate for packet

switched traffic.

Another result from this study indicates that a fast packet switch can support both

circuitand packet switched traffic.Destination directed packet switching for circuit

switched traffic requires additional processing, such as packet assembly, bit

interleaving, and header error checking, but iteliminates control memories, memory

update processing, switchover coordination, and a path finder procedure for channel

routing. The benefitsgained from thisconversion can be substantial. A detailed study

for an integrated network architectureforcircuitand packet switched trafficisstrongly

recommended. The study should cover specificnetwork requirements, frame and packet
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structures, flame efficiency,detailed baseband processor block diagram designs

(including allthe necessary functions from MCD output to modulator input),acquisition

and synchronization, capacity request/allocation procedures, flow/congestion control

procedures, and earth stationblock diagram designs. The key to the effectivestudy will

be well defined network requirements in the earlierphase of the study task.
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